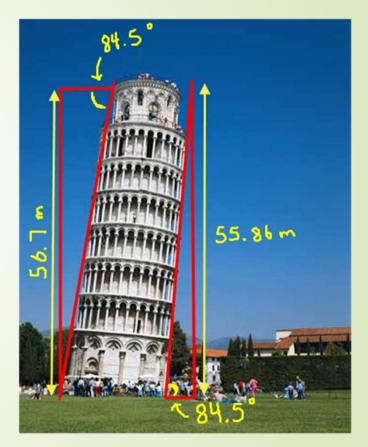


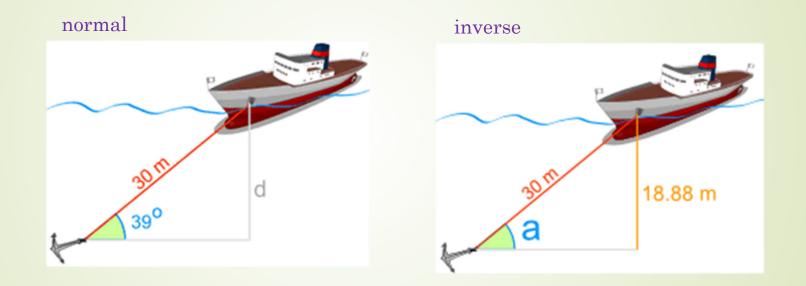
2. Inverse trigonometry

- Introduction
- Basic Concepts
- Inverse trigonometric functions & their Graphs
- Properties of Inverse Trigonometric Functions



Introduction

• There are real-life situations in which we need to determine the angle, not lengths.

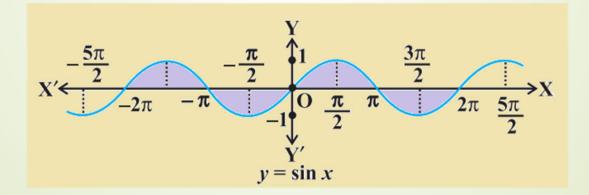


Inverse of functions

- The inverse of a function '*f*' exists if '*f*' is one-one and onto.
- Now, trigonometric functions are not one-one and onto over their natural domains and ranges and hence their inverses do not exist.
- So we shall study about the restrictions on domains and ranges of trigonometric functions and observe their through graphical representations.

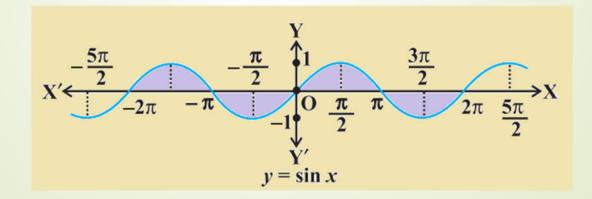
Functions : Natural Domain & range

- Sine function, i.e., sine : $\mathbf{R} \rightarrow [-1, 1]$
- Cosine function, i.e., $\cos : \mathbf{R} \rightarrow [-1, 1]$
- Tangent function, i.e., $\tan : \mathbf{R} \{x : x = (2n + 1) \ \pi/2, n \in \mathbf{Z}\} \rightarrow \mathbf{R}$
- Cotangent function, i.e., $\cot : \mathbf{R} \{x : x = n\pi, n \in \mathbf{Z}\} \rightarrow \mathbf{R}$
- Secant function, i.e., sec : $\mathbf{R} \{x : x = (2n + 1)\pi/2 , n \in \mathbf{Z}\} \rightarrow \mathbf{R} (-1, 1)$
- Cosecant function, i.e., cosec : $\mathbf{R} \{x : x = n\pi, n \in \mathbf{Z}\} \rightarrow \mathbf{R} (-1, 1)$



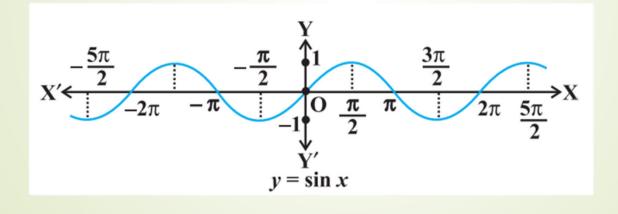
Inverse of Sin function

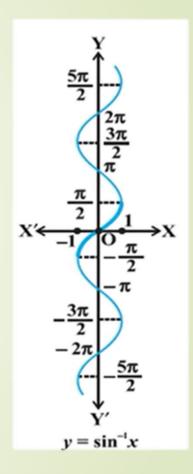
- Natural domain & range for Sine : $R \rightarrow [-1, 1]$
- If we restrict domain to $[-\pi/2, \pi/2]$, then it becomes one-one & onto with range [-1, 1]
- Restricted domain & range of sine: $[-\pi/2, \pi/2] \rightarrow [-1, 1]$
- Restricted domain & range of $\operatorname{Sin}^{-1} : [-1, 1] \rightarrow [-\pi/2, \pi/2]$
- $[-\pi/2, \pi/2]$ is called the *principal value branch*
- If $y = \operatorname{Sin}^{-1} x$, $\sin y = x$



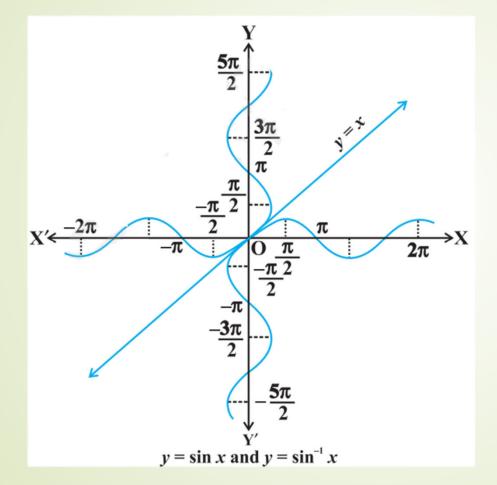
Graph for $Sin^{-1}x$

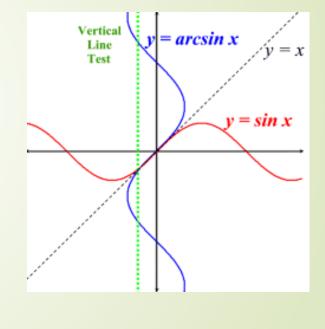
- The graph of Sin⁻¹ function can be obtained from the graph of original function by interchanging *x* and *y* axes.
- It can be shown that the graph of an inverse function can be obtained from the corresponding graph of original function as a mirror image (i.e., reflection) along the line y = x.





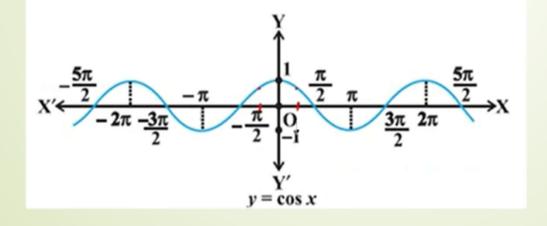
Mirror image

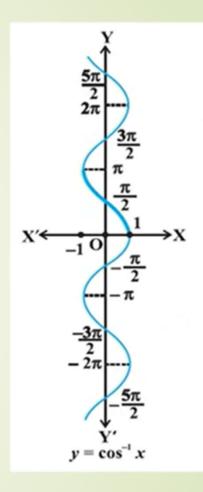




Inverse of Cos function

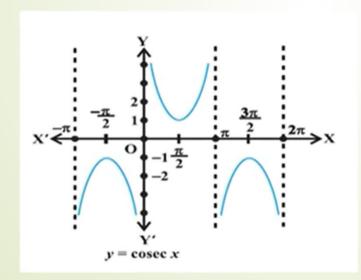
- Natural domain & range for $Cos : R \rightarrow [-1, 1]$
- If we restrict domain to [0, π], then it becomes one-one & onto range [-1, 1]
- Restricted domain & range of cosine: $[0, \pi] \rightarrow [-1, 1]$
- Restricted domain & range of $\operatorname{Cos}^{-1} : [-1, 1] \rightarrow [0, \pi]$
- $[0, \pi]$ is called the *principal value branch*.

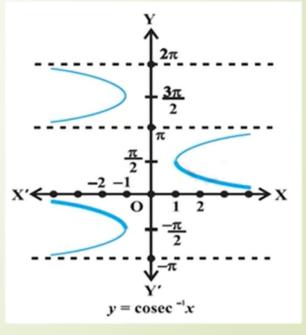




Inverse of Cosec function

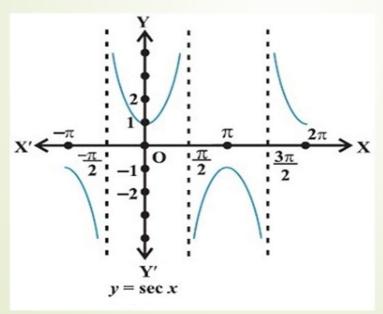
- Natural domain & range for Cosec : $\mathbf{R} \{x : x = n\pi, n \in \mathbf{Z}\} \rightarrow \mathbf{R} (-1, 1)$
- If we restrict domain to $[-\pi/2, \pi/2] \{0\}$, then it becomes one-one & onto.
- Restricted domain & range of cosec : $[-\pi/2, \pi/2] \{0\} \rightarrow R [-1, 1]$
- Restricted domain & range of Cosec⁻¹ : $R (-1, 1) \rightarrow [-\pi/2, \pi/2] \{0\}$
- $[-\pi/2, \pi/2] \{0\}$ is called the *principal value branch*.

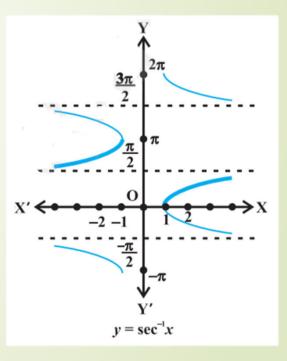




Inverse of Sec function

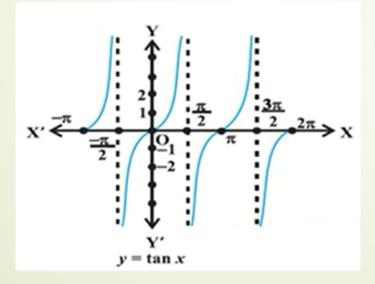
- Natural domain & range for Sec : $\mathbb{R} \{x : x = n\pi, n \in \mathbb{Z}\} \rightarrow \mathbb{R} (-1, 1)$
- If we restrict domain to $[0, \pi] {\pi/2}$, then it becomes one-one & onto.
- Restricted domain & range of sec : $[0, \pi] {\pi/2}, \rightarrow R (-1, 1)$
- Restricted domain & range of Sec⁻¹ : $R (-1, 1) \rightarrow [0, \pi] {\pi/2}$
- $[0, \pi] \{\pi/2\}$ is called the *principal value branch*.

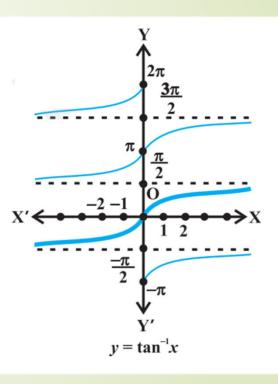




Inverse of Tan function

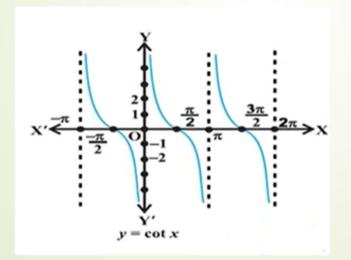
- Natural domain & range for Tan : $\mathbf{R} \{ x : x = (2n + 1)\pi/2 , n \in \mathbf{Z} \} \rightarrow \mathbf{R}$
- If we restrict domain to $(-\pi/2, \pi/2)$, then it becomes one-one & onto.
- Restricted domain & range of tan : $(-\pi/2, \pi/2) \rightarrow R$
- Restricted domain & range of $Tan^{-1}: R \rightarrow (-\pi/2, \pi/2)$
- $(-\pi/2, \pi/2)$ is called the *principal value branch*.

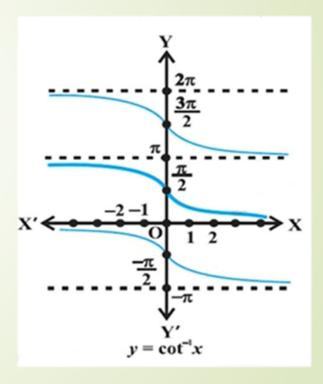




Inverse of Cot function

- Natural domain & range for $\cot : \mathbb{R} \{x : x = n\pi, n \in \mathbb{Z}\} \rightarrow \mathbb{R}$
- If we restrict domain to $(0, \pi)$, then it becomes one-one & onto with range R.
- Restricted domain & range of $\cot : (0, \pi) \rightarrow R$
- Restricted domain & range of Cot $^{-1}$: R \rightarrow (0, π)
- $(0, \pi)$ is called the *principal value branch*.





Note

- 1. $\sin^{-1}x$ should not be confused with $(\sin x)^{-1}$. In fact $(\sin x)^{-1} = 1/\sin x$ and similarly for other trigonometric functions.
- 2. Whenever no branch of an inverse trigonometric functions is mentioned, we mean the principal value branch of that function.
- 3. The value of an inverse trigonometric functions which lies in the range of principal branch is called the *principal value* of that inverse trigonometric functions.

sin ⁻¹	÷	[-1, 1]	\rightarrow	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
cos ⁻¹	:	[-1, 1]	\rightarrow	[0, π]
cosec ⁻¹	:	R – (–1,1)	\rightarrow	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right] - \{0\}$
sec ⁻¹	:	R – (–1, 1)	\rightarrow	$[0, \pi] - \{\frac{\pi}{2}\}$
tan ⁻¹	:	R	\rightarrow	$\left(\frac{-\pi}{2},\frac{\pi}{2}\right)$
cot ⁻¹	:	R	\rightarrow	(0, π)

Properties of Inverse Trigonometric Functions

1. I.
$$\sin^{-1}(1/x) = \csc^{-1}x$$
; $x \ge 1$ or $x \le -1$

I.
$$\cos^{-1}(1/x) = \sec^{-1} x ; x \ge 1 \text{ or } x \le -1$$

II.
$$\tan^{-1}(1/x) = \cot^{-1}x ; x > 0$$

2. I.
$$\sin^{-1}(-x) = -\sin^{-1}x$$
; $x \in [-1, 1]$
II. $\tan^{-1}(-x) = -\tan^{-1}x$; $x \in \mathbb{R}$
III. $\csc^{-1}(-x) = -\csc^{-1}x$; modulus $x \ge 1$

Cont.

3.

I.
$$\cos^{-1}(-x) = \pi - \cos^{-1} x$$
; $x \in [-1,1]$
II. $\sec^{-1}(-x) = \pi - \sec^{-1} x$; modulus $x \ge 1$
III. $\cot^{-1}(-x) = \pi - \cot^{-1} x$; if $x \in \mathbf{R}$ '

4. I.
$$\sin^{-1} x + \cos^{-1} x = \pi/2$$
; if $x \in [-1,1]$
II. $\tan^{-1} x + \cot^{-1} x = \pi/2$; if $x \in \mathbf{R}$ '
III. $\csc^{-1} x + \sec^{-1} x = \pi/2$; if modulus $x \ge 1$

Cont.

5. I.
$$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x + y}{1 - x \cdot y} \right)$$
, $xy < 1$
II. $\tan^{-1} x - \tan^{-1} y = \tan^{-1} \left(\frac{x - y}{1 + x \cdot y} \right)$, $xy > -1$

6. I.
$$2\tan^{-1} x = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$$
, modulus $x \le 1$
II. $2\tan^{-1} x = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$, $x \ge 0$
III. $2\tan^{-1} x = \tan^{-1}\left(\frac{2x}{1-x^2}\right)$, $-1 < x < 1$

